
Log-log convex programming

Akshay Agrawal, Steven Diamond, Stephen Boyd
Electrical Engineering, Stanford



Geometric programming

A geometric program (GP) [DPZ67] is an optimization problem

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p,

I gi : Rn
++ → R are monomials: (x1, . . . , xn) 7→ cxa1

1 · · · xann , c > 0.

I fi : Rn
++ → R are posynomials: sums of monomials



Applications

I chemical engineering

I circuit design

I transformer design

I aircraft design

I mechanical engineering

I communications



Log-log transformation

For f : D → R++, D ⊆ Rn
++, its log-log transformation is F (u) = log f (eu)

Example.

For f (x) =
∑n

i=1 cix
a1i
1 xa2i

2 . . . xanin , c > 0, F (u) = log
∑n

i=1 ci exp(aTi u)

I i.e., the log-log transformation of a posynomial is (the log of) a signomial

I F(u) is convex, because c > 0 and log-sum-exp is convex



Log-log curvature

Curvature of F (u) = log f (eu) gives log-log curvature of f

I if F convex, then f is log-log convex

I if F concave, then f is log-log concave

I if F affine, then f is log-log affine



Log-log convex programs

A log-log convex program (LLCP) is an optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p,

I gi : Rn
++ → R are log-log affine

I fi : Rn
++ → R are log-log convex



Log-log convex programs

LLCPs generalize GPs and “generalized geometric programs”

LP

GP

LLCP

(Exponential cone programming also generalizes GP [CS17; MCW18])



Properties of log-log convex functions



Jensen’s inequality

f : Rn
++ → R++ is log-log convex iff it is convex w.r.t. the geometric mean, i.e.

f (xθ ◦ y 1−θ) ≤ f (x)θf (y)1−θ,

for θ ∈ [0, 1] and x , y ∈ dom f

I ◦ is the elementwise product; powers meant elementwise

I Also called geometric or multiplicative convexity

I Literature is several decades old [Mon28]

I Gives rise to interesting inequalities [Nic00]



Scalar log-log convex functions

Scalar log-log convex functions are convex on a log-log plot



Epigraph

If f is a log-log convex function, then

log epif = {(log x , log t)|f (x) ≤ t}

is a convex set. The converse is also true.



Integration

If f : [0, a)→ [0,∞) is continuous and log-log convex (log-log concave) on
(0, a), then

x 7→
∫ x

0

f (t)dt

is log-log convex (log-log concave) on (0, a) [Mon28].

I X a random variable with continuous log-log concave density on [0, a), then
P(0 < X ≤ x) is a log-log concave function of x .

I Gaussian, Gibrat, Student’s t, . . . [Bar10]



Composition rule

Let
f (x) = h(g1(x), g2(x), . . . , gk(x)),

where h : D ⊆ Rk
++ → R is log-log convex, and gi : Di ⊆ Rn

++ → R. Suppose for
each i , one of the following holds:

I h is nondecreasing in the ith argument, and gi is log-log convex

I h is nonincreasing in the ith argument, and gi is log-log concave

I gi is log-log affine

Then f is log-log convex.



Composition rule

Proof is simple: F (u) = log f (eu) can be written as

H(G1(u),G2(u), . . . ,Gk(u)),

where H(u) = log h(eu) and Gi(i) = log gi(e
u). Result follows from the

analogous composition rule for convex functions



Composition rule

Composition rule is the basis of Disciplined Geometric Programming (DGP), a
grammar for a DSL for LLCPs [ADB18]

exactly analogous to Disciplined Convex Programming (DCP) [GBY06]



Examples



Log-log affine functions

Products, ratios, and powers are log-log affine



Log-log convex functions

I x1 + x2

I max(x1, x2)

I posynomials

I `p norms

I Functions with positive Taylor expansions

I The Gamma function Γ(x) =
∫∞

0
tx−1e−tdt restricted to [1,∞)



Log-log concave functions

I x1 − x2, with x1 > x2 > 0

I −x log x , x ∈ (0, 1)

I complementary CDF of a log-concave density, e.g. 1√
2π

∫∞
x

e−t
2/2dt



Functions of positive matrices

Suppose f : Rm×n
++ → Rp×q

++ , Rm×n
++ denoting m-by-n matrices with positive entries

f is log-log convex if F (U) = log f (eU) is convex w.r.t the nonnegative orthant

(log, exp meant elementwise)

Examples

I Spectral radius: ρ(X ) = sup{|λ| | Xv = λv}.
I Resolvent: f (X , s) = (sI − X )−1, s > 0 such that s not an eigenvalue of X .



Disciplined Geometric Programming



Disciplined geometric programming

I Analogue of DCP, but for LLCPs

I Library of atoms with known log-log curvature (sum, product, ratio, exp, ...)

I Atoms may be combined using the composition rule

I Can express LLCPs of the form

minimize f0(x)

subject to fi(x) ≤ f̃i(x), i = 1, . . . ,m
gi(x) = g̃i(x), i = 1, . . . , p,

(1)

with fi log-log convex, f̃i log-log concave, gi and g̃i log-log affine (must be
verifiable by the composition rule)



Implementation

I DGP implemented as a reduction in CVXPY 1.0 [AVD+18]:
https://www.cvxpy.org/tutorial/dgp/index.html

I User types in a DGP-compliant LLCP and calls a single method to solve it

I CVXPY reduces the LLCP to a (disciplined) convex program, solves it, and
returns a solution to the original problem

https://www.cvxpy.org/tutorial/dgp/index.html


Example

import cvxpy as cp

X = cp.Variable((3, 3), pos=True)

objective_fn = cp.pf_eigenvalue(X)

known_value_indices = tuple(zip(*

[[0, 0], [0, 2], [1, 1], [2, 0], [2, 1]]))

constraints = [

X[known_value_indices] == [1.0, 1.9, 0.8, 3.2, 5.9],

X[0, 1] * X[1, 0] * X[1, 2] * X[2, 2] == 1.0,

]

problem = cp.Problem(cp.Minimize(objective_fn), constraints)

problem.solve(gp=True)

print("Optimal value: ", problem.value, " Solution: ", X.value)
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